Stability of Ion Acceleration in a Plasma Dominated by the Radiation Pressure of an Electromagnetic Pulse
نویسندگان
چکیده
The electric fields produced by the interaction of ultra-short and ultra-intense laser pulses with a thin target make it possible to obtain multiMeV , high density, highly collimated proton and ion beams with duration in the sub-picosecond range. Critical features are the efficiency of the ion acceleration process and the energy spectrum of the produced ion beam. At high laser intensities the radiation pressure of the laser pulse foil plays a major role in the acceleration process. We discuss the stability of this regime against the onset of Rayleigh-Taylor deformations of the plasma foil. Introduction The effective ion acceleration up to a few tens ofMeV during the interaction of an ultra short and ultra intense laser pulse with matter is possibly one of most important results of the interaction of multi-terawatt and petawatt power laser pulses with plasmas. Compared to conventional accelerators these proton beams have a very high brilliance and are very directional, with a divergence of a few degrees at the highest energies and an apparent source size of less than 5 − 10 μm. The number of particles in the beams can approach 10 in bursts of ps duration, three orders of magnitude shorter than conventional accelerator bunches, and with good conversion efficiency of the laser energy. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear
منابع مشابه
شبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملPhoton bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse.
The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e...
متن کاملاثر کانال یونی بر خودکانونی شدن پالس لیزری گاؤسی در پلاسماهای کم چگال
We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. T...
متن کاملSurvey of the Effects of Exposure to 900 MHz Radiofrequency Radiation Emitted by a GSM Mobile Phone on the Pattern of Muscle Contractions in an Animal Model
Introduction: The rapid development of wireless telecommunication technologies over the past decades, has led to significant changes in the exposure of the general public to electromagnetic fields. Nowadays, people are continuously exposed to different sources of electromagnetic fields such as mobile phones, mobile base stations, cordless phones, Wi-Fi routers, and power lines. Therefore, th...
متن کاملA Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کامل